AV片在线观看_大屁股熟女一区二区三区_妺妺窝人体色WWW看人体_久久午夜无码鲁丝片午夜精品

熱門搜索: 蓄熱型(EHT)地源熱泵系統(tǒng) 裝配式高效機(jī)房 采暖、供熱設(shè)備及通風(fēng)系統(tǒng) HO-RCS混凝土結(jié)構(gòu)雷達(dá) 節(jié)能減排自動(dòng)化系統(tǒng) 干熱巖地溫監(jiān)測(cè)系統(tǒng) 地?zé)峁芾磉h(yuǎn)程系統(tǒng) 地?zé)豳Y源開采遠(yuǎn)程監(jiān)測(cè)系統(tǒng) 地?zé)豳Y源回灌遠(yuǎn)程監(jiān)測(cè)系統(tǒng) 地?zé)崴Y源動(dòng)態(tài)監(jiān)測(cè)系統(tǒng) 分布式地溫監(jiān)測(cè)系統(tǒng) 地源熱泵能耗監(jiān)控測(cè)溫系統(tǒng) TD-016C淺層地溫在線監(jiān)測(cè)系統(tǒng) HO-YTDCS一體式多參數(shù)分析儀 水質(zhì)分析儀 DC-2500震電勘探技術(shù)承接項(xiàng)目合作 A30糧庫全自動(dòng)三維激光掃描儀 A260棚頂固定懸掛式全自動(dòng)盤煤儀

PRODUCT CLASSIFICATION

產(chǎn)品分類

技術(shù)文章/ Technical Articles

您的位置:首頁  /  技術(shù)文章  /  用動(dòng)態(tài)模擬方法設(shè)計(jì)U形地埋管換熱器

用動(dòng)態(tài)模擬方法設(shè)計(jì)U形地埋管換熱器

更新時(shí)間:2016-07-18      瀏覽次數(shù):1211

用動(dòng)態(tài)模擬方法設(shè)計(jì)U形地埋管換熱器

摘要:給出了U形地埋管換熱器的數(shù)值模型。利用實(shí)測(cè)數(shù)據(jù)對(duì)比驗(yàn)證了自主開發(fā)的模擬軟件的準(zhǔn)確性。在模擬建筑全年動(dòng)態(tài)負(fù)荷的基礎(chǔ)上,采用該模擬軟件對(duì)某地源熱泵工程地埋管換熱器進(jìn)行了30年的逐時(shí)模擬,確定了埋管方案。指出不能采用單位深度換熱量設(shè)計(jì)地源熱泵換熱器,必須進(jìn)行動(dòng)態(tài)模擬。     關(guān)鍵詞:地源熱泵?。招蔚芈窆軗Q熱器 數(shù)值模型 動(dòng)態(tài)模擬     0 引言     地源熱泵空調(diào)在國內(nèi)外受到廣泛關(guān)注,發(fā)展迅速[1]。在我國地源熱泵推廣中,科學(xué)設(shè)計(jì)、系統(tǒng)優(yōu)化、規(guī)范施工及基礎(chǔ)研究方面仍需加強(qiáng)[1]。     地源熱泵系統(tǒng)設(shè)計(jì)必須進(jìn)行熱響應(yīng)實(shí)驗(yàn)、建筑動(dòng)態(tài)負(fù)荷計(jì)算、熱泵動(dòng)態(tài)負(fù)荷計(jì)算、系統(tǒng)方案初步擬定、地埋管換熱器水溫及土壤溫度的動(dòng)態(tài)模擬等工作。地埋管換熱器設(shè)計(jì)合理與否是地源熱泵工程成功與否的關(guān)鍵,但因地埋管換熱器的非穩(wěn)態(tài)特性而使其設(shè)計(jì)復(fù)雜化。本文給出了地埋管換熱器的數(shù)值模型,在模擬建筑全年動(dòng)態(tài)負(fù)荷基礎(chǔ)上,采用自主開發(fā)的U形地埋管換熱器動(dòng)態(tài)數(shù)值模擬軟件,對(duì)某地源熱泵工程地埋管換熱器進(jìn)行了30a的逐時(shí)模擬,確定了埋管方案。計(jì)算表明,地埋管換熱器動(dòng)態(tài)數(shù)值模擬方法準(zhǔn)確性較高,快速,具有工程實(shí)用性。     1 熱響應(yīng)實(shí)驗(yàn)     部分工程簡(jiǎn)單按經(jīng)驗(yàn)數(shù)據(jù)設(shè)計(jì)地源熱泵系統(tǒng),但由于各種場(chǎng)地地質(zhì)水文條件的差異,經(jīng)驗(yàn)數(shù)據(jù)不具普適性,估算可能造成系統(tǒng)不合理。因此GB50366—2005《地源熱泵系統(tǒng)工程技術(shù)規(guī)范》[2-3]規(guī)定必須進(jìn)行熱響應(yīng)實(shí)驗(yàn)。     熱響應(yīng)實(shí)驗(yàn)的目的在于獲取試驗(yàn)孔單位深度吸放熱量、巖土的導(dǎo)熱系數(shù)及體積比熱容。必須注意,熱響應(yīng)實(shí)驗(yàn)獲得的單位深度換熱量只能作為參考進(jìn)行初步規(guī)劃,因?yàn)樵摂?shù)據(jù)是在特定溫差條件下測(cè)得的,并且熱響應(yīng)測(cè)試時(shí)間較短,不能有效反映熱量長期累積對(duì)換熱的影響。準(zhǔn)確的土壤導(dǎo)熱系數(shù)和體積比熱容才是系統(tǒng)設(shè)計(jì)模擬的基本依據(jù)。巖土熱物性參數(shù)可以在對(duì)數(shù)時(shí)間坐標(biāo)上用直線擬合方法計(jì)算,也可直接用多參數(shù)估計(jì)法計(jì)算[2-9],其基本思想是土壤熱物性參數(shù)具代表性的取值應(yīng)該保證模型計(jì)算水溫與實(shí)測(cè)水溫的方差小。關(guān)于熱物性參數(shù)計(jì)算方法的探討,此處不予詳述。     2 地埋管換熱器的動(dòng)態(tài)模擬方法     建筑負(fù)荷計(jì)算可以采用常見的軟件。此處僅闡述地埋管換熱器的模擬方法。     2.1 地埋管換熱器數(shù)值模型     目前國外地?zé)崮M軟件主要有GLHEPRO,GLD[10]。國內(nèi)有地?zé)嶂擒浖?。在參考了現(xiàn)有計(jì)算模型[4-14]的基礎(chǔ)上,筆者采用數(shù)值方法[15-17]獨(dú)立開發(fā)了U形地埋管換熱器動(dòng)態(tài)模擬軟件[18]。     該軟件采用圓柱熱源模型,鉆孔內(nèi)的傳熱簡(jiǎn)化為穩(wěn)態(tài)傳熱,孔外傳熱認(rèn)為是非穩(wěn)態(tài)的。忽略軸向?qū)?,也忽略地面溫度波?dòng)和埋管底部傳熱的影響。離散網(wǎng)格如圖1所示。                               式(1)~(9)中?。簦椋?tau;為第i個(gè)節(jié)點(diǎn)τ時(shí)刻的溫度,℃;Q為某個(gè)時(shí)刻換熱器的熱負(fù)荷,W;Δτ為時(shí)間步長,s;ρscs為土壤的體積比熱容,J/(m3·K);Vi為控制單元的容積,m3;λ為土壤的導(dǎo)熱系數(shù),W/(m·K);Δr?yàn)榭臻g步長,m;ri為第i個(gè)節(jié)點(diǎn)對(duì)應(yīng)的半徑,m;z為整個(gè)換熱器豎向深度,m。多孔布置時(shí),孔間距的中心位置可以考慮為絕熱邊界,tM,τ計(jì)算式應(yīng)作相應(yīng)改變,此略。     流體節(jié)點(diǎn)與孔壁通過下式起來:                  式中?。簦鏋榱黧w平均溫度,℃;Rb為單位深度孔內(nèi)熱阻,m·K/W,其計(jì)算方法見文獻(xiàn)[11];t1為孔壁溫度,℃。     地埋管換熱器進(jìn)口溫度tf,in和出口溫度tf,out分別為:                   式(11)~(13)中 Δtf為進(jìn)出口溫差,℃;m為質(zhì)量流量,kg/s;cp,w為循環(huán)水的比定壓熱容,J/(kg·K)。在土壤熱物性參數(shù)、設(shè)計(jì)流量確定后,利用該模型可以設(shè)定換熱器入口溫度已知,計(jì)算出口溫度、土壤溫度及換熱量;也可以設(shè)定換熱量已知,計(jì)算進(jìn)、出口溫度和土壤溫度。     2.2 動(dòng)態(tài)模擬軟件驗(yàn)證及討論     為了驗(yàn)證自主開發(fā)軟件的準(zhǔn)確性,筆者采用2009年4月對(duì)綿陽某場(chǎng)地進(jìn)行熱響應(yīng)實(shí)驗(yàn)得到的數(shù)據(jù)[18-19]進(jìn)行對(duì)比。方法如下:1)根據(jù)實(shí)測(cè)的進(jìn)、出水溫度和流量,用線熱源解析模型估計(jì)土壤導(dǎo)熱系數(shù)及體積比熱容。2)基于估計(jì)的導(dǎo)熱系數(shù)和體積比熱容、實(shí)測(cè)的流量,以實(shí)測(cè)入口溫度為已知條件,計(jì)算出口溫度。3)比較實(shí)測(cè)的出口溫度和模擬計(jì)算的出口溫度。在設(shè)定入口溫度的情況下,雙U形管出口溫度實(shí)測(cè)值和模擬計(jì)算值的比較如圖2~5所示。                   圖2,4表明,吸熱和放熱工況下,出口溫度模擬計(jì)算值與實(shí)測(cè)值趨勢(shì)一致,說明數(shù)值模型整體上符合物理規(guī)律。值得注意的是:熱響應(yīng)實(shí)驗(yàn)初期并不嚴(yán)格滿足恒熱流假設(shè),恒熱流線熱源或柱熱源解析解一般用于實(shí)驗(yàn)進(jìn)行10h以后才比較準(zhǔn)確。該數(shù)值模型適用于變熱流工況,用于放熱/吸熱初期的模擬仍有較高的準(zhǔn)確度。     由圖3,5可以看出,模擬值總體偏高,但絕大部分情況下偏差在1℃以內(nèi)。偏差一方面來自于模型及算法的近似處理(比如空間步長、時(shí)間步長對(duì)精度有影響),另一方面有可能來自于實(shí)測(cè)數(shù)據(jù)本身(比如巖土熱物性參數(shù)包含有某種程度的不確定性)。筆者認(rèn)為除了空間步長、時(shí)間步長對(duì)精度有影響外,孔內(nèi)穩(wěn)態(tài)熱阻的計(jì)算也可能造成水溫的較大偏差。文獻(xiàn)[19]只估算了導(dǎo)熱系數(shù)及體積比熱容2個(gè)參數(shù),孔內(nèi)熱阻采用文獻(xiàn)[11]的公式計(jì)算。筆者擬用熱響應(yīng)實(shí)驗(yàn)測(cè)試數(shù)據(jù)同時(shí)估算導(dǎo)熱系數(shù)、體積比熱容及孔內(nèi)熱阻3個(gè)參數(shù)。以此為基礎(chǔ),用數(shù)值模型獲得的水溫模擬值可能會(huì)與實(shí)測(cè)值吻合得更好。     總體來說,自主開發(fā)的軟件具有較高的準(zhǔn)確性,可以用于工程設(shè)計(jì)。遺憾的是目前驗(yàn)證還于短期的熱響應(yīng)實(shí)驗(yàn)數(shù)據(jù),長期模擬(1a以上)的準(zhǔn)確性還有待進(jìn)一步驗(yàn)證。長期模擬可以把軸向傳熱考慮進(jìn)去。該數(shù)值模型與其他計(jì)算模型的對(duì)比驗(yàn)證目前正在進(jìn)行。     除具有較高準(zhǔn)確性外,該軟件計(jì)算速度較快,動(dòng)態(tài)模擬1a的運(yùn)行情況只需機(jī)時(shí)1min,用于多種方案的分析篩選方便快捷,非常實(shí)用。     目前該軟件還未把地埋管換熱器與熱泵機(jī)組耦合起來進(jìn)行全系統(tǒng)能耗模擬,正在進(jìn)一步完善。全系統(tǒng)模擬需要給出熱泵機(jī)組的性能計(jì)算模型。     3 地埋管換熱器設(shè)計(jì)舉例     3.1 建筑負(fù)荷     某工程夏季空調(diào)設(shè)計(jì)總冷負(fù)荷為1 500kW,冬季空調(diào)設(shè)計(jì)總熱負(fù)荷為1?。埃埃埃耄祝曛饡r(shí)負(fù)荷如圖6所示。                    3.2 冷熱源方案     采用2臺(tái)地埋管地源熱泵空調(diào)機(jī)組和1臺(tái)水冷螺桿式冷水機(jī)組。     熱負(fù)荷全部由2臺(tái)地源熱泵機(jī)組承擔(dān)。夏季冷負(fù)荷小于設(shè)計(jì)負(fù)荷的1/3時(shí),開啟1臺(tái)冷水機(jī)組,以便土壤恢復(fù)冷熱平衡;冷負(fù)荷大于設(shè)計(jì)負(fù)荷的1/3時(shí),開啟1臺(tái)冷水機(jī)組承擔(dān)設(shè)計(jì)負(fù)荷的1/3,其余部分由1臺(tái)或2臺(tái)地源熱泵機(jī)組承擔(dān)。     3.3 地源熱泵機(jī)組負(fù)荷     根據(jù)冷熱源方案,得到熱泵機(jī)組的全年負(fù)荷,如圖7所示。                   3.4 地埋管換熱器負(fù)荷     根據(jù)熱泵機(jī)組的EER和COP(目前沒考慮機(jī)組性能的動(dòng)態(tài)變化),計(jì)算得到地埋管換熱器的全年負(fù)荷,如圖8所示。全年累計(jì)排熱量為7.08×108 kW·h,累計(jì)吸熱量為9.74×108?。耄?middot;h。全年冷熱負(fù)荷比較接近。                   3.5 換熱器初步方案     根據(jù)當(dāng)?shù)氐刭|(zhì)條件及打孔費(fèi)用,建議鉆孔深度為70m。     圖8中,夏天地埋管換熱器承擔(dān)的大放熱負(fù)荷為924kW,按單位深度放熱量70W/m估計(jì),鉆孔數(shù)為190個(gè)。圖8中,冬天大吸熱負(fù)荷為806kW,按單位深度吸熱量60W/m估計(jì),鉆孔數(shù)為192個(gè)。綜合以上數(shù)據(jù),確定初步方案:鉆200孔。     3.6 動(dòng)態(tài)模擬及優(yōu)化     按初步方案(200孔)全年運(yùn)行時(shí)換熱器的進(jìn)、出水溫度如圖9所示??梢钥闯觯玻埃翱追桨赋鏊疁仄撸ǜ呓矗啊?,高于32℃的時(shí)間達(dá)74h),不符合熱泵冷水機(jī)組運(yùn)行條件,說明按單位深度吸、放熱量經(jīng)驗(yàn)數(shù)據(jù)進(jìn)行設(shè)計(jì)是不可靠的。                   考慮到熱量累積的影響,打孔數(shù)增加為260個(gè),全年運(yùn)行時(shí)換熱器進(jìn)、出水溫度如圖10所示。260孔方案下,出水溫度超過32℃的時(shí)間不足18h,低在5℃以上??梢哉J(rèn)為全年運(yùn)行時(shí)該系統(tǒng)會(huì)有較高的效率。              260孔方案下,孔壁溫度高時(shí)刻及低時(shí)刻土壤溫度的空間分布如圖11所示。                   260孔方案下,第30年鉆孔周圍半徑10m內(nèi)土壤溫度分布如圖12所示,其中孔壁及距鉆孔中心3,4m處的土壤溫度全年變化如圖13所示。從圖11~13可以看出:     1)土壤高溫度分布,運(yùn)行30a后幾乎沒有變化??妆诟邷囟燃s為26℃。     2)土壤低溫度分布,運(yùn)行30a后有輕微降低。因?yàn)樵摲桨钢?,累?jì)吸熱比累計(jì)放熱大。孔壁低溫度約為14.5℃     3)鉆孔周圍溫度變化明顯的區(qū)域在3m以內(nèi)。因此建議孔間距為6m。     4 結(jié)語     本文給出了地埋管換熱器非穩(wěn)態(tài)傳熱數(shù)值模型。該動(dòng)態(tài)模型計(jì)算準(zhǔn)確、快捷,可用于工程設(shè)計(jì)。計(jì)算實(shí)例表明,不能采用單位深度換熱量設(shè)計(jì)地埋管換熱器的終方案,必須進(jìn)行地埋管換熱器動(dòng)態(tài)模擬,確定換熱器方案,保證機(jī)組運(yùn)行的條件。本文只模擬了地埋管換熱器,地埋管換熱器與熱泵機(jī)組的耦合未考慮。應(yīng)對(duì)該方法進(jìn)行進(jìn)一步的完善,以便耦合模擬全系統(tǒng)的能耗。  

產(chǎn)品咨詢請(qǐng)北京鴻鷗儀器(bjhocy),產(chǎn)品搜索:地源熱泵測(cè)溫,地埋管測(cè)溫
  
  關(guān)鍵詞:地源熱泵地埋管溫度測(cè)量系統(tǒng)實(shí)現(xiàn)實(shí)時(shí)溫度在線監(jiān)測(cè)/地源熱泵換熱井實(shí)時(shí)溫度電腦監(jiān)測(cè)系統(tǒng)/GPRS式豎直地埋管地源熱泵溫度監(jiān)控系統(tǒng)/地源熱泵溫度場(chǎng)測(cè)控系統(tǒng)/地埋管測(cè)溫/地源熱泵溫度監(jiān)控/地源熱泵測(cè)溫
  
  遠(yuǎn)程全自動(dòng)地溫監(jiān)測(cè)系統(tǒng)/鐵路凍土地溫監(jiān)測(cè)系統(tǒng)/地溫監(jiān)測(cè)系統(tǒng)/城市地溫監(jiān)測(cè)自動(dòng)化系統(tǒng)/礦井深部地溫/地源熱泵監(jiān)測(cè)研究/地源熱泵溫度測(cè)量系統(tǒng)/淺層地?zé)釡y(cè)溫/深水測(cè)溫儀/深井測(cè)溫儀/深水測(cè)溫儀/深井測(cè)溫儀
  
  推薦產(chǎn)品如下:
  
  地源熱泵溫度監(jiān)控系統(tǒng)/地源熱泵測(cè)溫/淺層地溫能動(dòng)態(tài)監(jiān)測(cè)系統(tǒng)

掃碼加微信

郵箱:bjhoyq@163.com

傳真:010-67051434

地址:北京市朝陽區(qū)高碑店鄉(xiāng)北花園村6號(hào)(近韓國慕色攝影)

Copyright © 2025 北京鴻鷗成運(yùn)儀器設(shè)備有限公司版權(quán)所有   備案號(hào):京ICP備17036721號(hào)-1   技術(shù)支持:環(huán)保在線

TEL:15601379746

小程序二維碼